Increased light harvesting in dye-sensitized solar cells with energy relay dyes

نویسندگان

  • Brian E. Hardin
  • Eric T. Hoke
  • Paul B. Armstrong
  • Jun-Ho Yum
  • Pascal Comte
  • Tomás Torres
  • Jean M. J. Fréchet
  • Md Khaja Nazeeruddin
  • Michael Grätzel
چکیده

Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells.

Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from t...

متن کامل

Investigation of Indigo/thioindigo Tandem Dye-Sensitized Solar Cells

In this paper we used two free-metal organic dyes (dye 1 and dye 2) based on indigo and thioindigo with cyanoacrylic acid as the electron acceptor group. The proposed dyes were sensitized from naphalene as the starting material by standard reactions and characterized by different analytical techniques and UV-Visible spectroscopy after purification. Spectrophotometric measurements of the organic...

متن کامل

Novel organic dyes for efficient dye-sensitized solar cells.

Two novel metal-free organic dyes containing thienothiophene and thiophene segments have been synthesized. Nano-crystalline TiO2 dye-sensitized solar cells were fabricated using these dyes as light-harvesting sensitizers, and a high solar energy-to-electricity conversion efficiency of 6.23% was achieved.

متن کامل

The Construction and Comparison of Dye-Sensitized Solar Cells with Blackberry and N719 Dyes

In a dye-sensitized solar cell (DSSC), the amount of light absorption dependson the design of the pigments, which determines the strength of light absorption and theoptical range of the cell. In this paper, we have constructed and studied two fairly similarpattern of DSSCs in structure. The thickness of TiO2 used for both cells is taken to be 2μm. We have used an industrial N719 dye for one of ...

متن کامل

Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell

The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009